'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q0(a(x1)) -> x(q1(x1)) , q1(a(x1)) -> a(q1(x1)) , q1(y(x1)) -> y(q1(x1)) , a(q1(b(x1))) -> q2(a(y(x1))) , a(q2(a(x1))) -> q2(a(a(x1))) , a(q2(y(x1))) -> q2(a(y(x1))) , y(q1(b(x1))) -> q2(y(y(x1))) , y(q2(a(x1))) -> q2(y(a(x1))) , y(q2(y(x1))) -> q2(y(y(x1))) , q2(x(x1)) -> x(q0(x1)) , q0(y(x1)) -> y(q3(x1)) , q3(y(x1)) -> y(q3(x1)) , q3(bl(x1)) -> bl(q4(x1))} Details: We have computed the following set of weak (innermost) dependency pairs: { q0^#(a(x1)) -> c_0(q1^#(x1)) , q1^#(a(x1)) -> c_1(a^#(q1(x1))) , q1^#(y(x1)) -> c_2(y^#(q1(x1))) , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1)))) , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1)))) , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1)))) , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1)))) , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1)))) , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1)))) , q2^#(x(x1)) -> c_9(q0^#(x1)) , q0^#(y(x1)) -> c_10(y^#(q3(x1))) , q3^#(y(x1)) -> c_11(y^#(q3(x1))) , q3^#(bl(x1)) -> c_12()} The usable rules are: { q1(a(x1)) -> a(q1(x1)) , q1(y(x1)) -> y(q1(x1)) , a(q1(b(x1))) -> q2(a(y(x1))) , a(q2(a(x1))) -> q2(a(a(x1))) , a(q2(y(x1))) -> q2(a(y(x1))) , y(q1(b(x1))) -> q2(y(y(x1))) , y(q2(a(x1))) -> q2(y(a(x1))) , y(q2(y(x1))) -> q2(y(y(x1))) , q3(y(x1)) -> y(q3(x1)) , q3(bl(x1)) -> bl(q4(x1)) , q2(x(x1)) -> x(q0(x1)) , q0(a(x1)) -> x(q1(x1)) , q0(y(x1)) -> y(q3(x1))} The estimated dependency graph contains the following edges: {q0^#(a(x1)) -> c_0(q1^#(x1))} ==> {q1^#(y(x1)) -> c_2(y^#(q1(x1)))} {q0^#(a(x1)) -> c_0(q1^#(x1))} ==> {q1^#(a(x1)) -> c_1(a^#(q1(x1)))} {q1^#(a(x1)) -> c_1(a^#(q1(x1)))} ==> {a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1))))} {q1^#(a(x1)) -> c_1(a^#(q1(x1)))} ==> {a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))} {q1^#(a(x1)) -> c_1(a^#(q1(x1)))} ==> {a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1))))} {q1^#(y(x1)) -> c_2(y^#(q1(x1)))} ==> {y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))} {q1^#(y(x1)) -> c_2(y^#(q1(x1)))} ==> {y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))} {q1^#(y(x1)) -> c_2(y^#(q1(x1)))} ==> {y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1))))} {a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1))))} ==> {q2^#(x(x1)) -> c_9(q0^#(x1))} {a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))} ==> {q2^#(x(x1)) -> c_9(q0^#(x1))} {a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1))))} ==> {q2^#(x(x1)) -> c_9(q0^#(x1))} {y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1))))} ==> {q2^#(x(x1)) -> c_9(q0^#(x1))} {y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))} ==> {q2^#(x(x1)) -> c_9(q0^#(x1))} {y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))} ==> {q2^#(x(x1)) -> c_9(q0^#(x1))} {q2^#(x(x1)) -> c_9(q0^#(x1))} ==> {q0^#(y(x1)) -> c_10(y^#(q3(x1)))} {q2^#(x(x1)) -> c_9(q0^#(x1))} ==> {q0^#(a(x1)) -> c_0(q1^#(x1))} {q0^#(y(x1)) -> c_10(y^#(q3(x1)))} ==> {y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))} {q0^#(y(x1)) -> c_10(y^#(q3(x1)))} ==> {y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))} {q3^#(y(x1)) -> c_11(y^#(q3(x1)))} ==> {y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))} {q3^#(y(x1)) -> c_11(y^#(q3(x1)))} ==> {y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))} We consider the following path(s): 1) { q3^#(y(x1)) -> c_11(y^#(q3(x1))) , q0^#(a(x1)) -> c_0(q1^#(x1)) , q2^#(x(x1)) -> c_9(q0^#(x1)) , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1)))) , q0^#(y(x1)) -> c_10(y^#(q3(x1))) , q1^#(y(x1)) -> c_2(y^#(q1(x1))) , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1)))) , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1)))) , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1)))) , q1^#(a(x1)) -> c_1(a^#(q1(x1))) , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1)))) , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1))))} The usable rules for this path are the following: { q1(a(x1)) -> a(q1(x1)) , q1(y(x1)) -> y(q1(x1)) , a(q1(b(x1))) -> q2(a(y(x1))) , a(q2(a(x1))) -> q2(a(a(x1))) , a(q2(y(x1))) -> q2(a(y(x1))) , y(q1(b(x1))) -> q2(y(y(x1))) , y(q2(a(x1))) -> q2(y(a(x1))) , y(q2(y(x1))) -> q2(y(y(x1))) , q3(y(x1)) -> y(q3(x1)) , q3(bl(x1)) -> bl(q4(x1)) , q2(x(x1)) -> x(q0(x1)) , q0(a(x1)) -> x(q1(x1)) , q0(y(x1)) -> y(q3(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q1(a(x1)) -> a(q1(x1)) , q1(y(x1)) -> y(q1(x1)) , a(q1(b(x1))) -> q2(a(y(x1))) , a(q2(a(x1))) -> q2(a(a(x1))) , a(q2(y(x1))) -> q2(a(y(x1))) , y(q1(b(x1))) -> q2(y(y(x1))) , y(q2(a(x1))) -> q2(y(a(x1))) , y(q2(y(x1))) -> q2(y(y(x1))) , q3(y(x1)) -> y(q3(x1)) , q3(bl(x1)) -> bl(q4(x1)) , q2(x(x1)) -> x(q0(x1)) , q0(a(x1)) -> x(q1(x1)) , q0(y(x1)) -> y(q3(x1)) , q3^#(y(x1)) -> c_11(y^#(q3(x1))) , q0^#(a(x1)) -> c_0(q1^#(x1)) , q2^#(x(x1)) -> c_9(q0^#(x1)) , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1)))) , q0^#(y(x1)) -> c_10(y^#(q3(x1))) , q1^#(y(x1)) -> c_2(y^#(q1(x1))) , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1)))) , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1)))) , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1)))) , q1^#(a(x1)) -> c_1(a^#(q1(x1))) , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1)))) , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1))))} Details: We apply the weight gap principle, strictly orienting the rules { q3(bl(x1)) -> bl(q4(x1)) , q2(x(x1)) -> x(q0(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q3(bl(x1)) -> bl(q4(x1)) , q2(x(x1)) -> x(q0(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] a(x1) = [1] x1 + [0] x(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] y(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] bl(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] q1^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [8] a^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [0] y^#(x1) = [1] x1 + [0] c_3(x1) = [1] x1 + [1] q2^#(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [1] c_7(x1) = [1] x1 + [1] c_8(x1) = [1] x1 + [1] c_9(x1) = [1] x1 + [0] c_10(x1) = [1] x1 + [0] q3^#(x1) = [1] x1 + [1] c_11(x1) = [1] x1 + [0] c_12() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1)))) , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))} and weakly orienting the rules { q3(bl(x1)) -> bl(q4(x1)) , q2(x(x1)) -> x(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1)))) , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] a(x1) = [1] x1 + [0] x(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] y(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] bl(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] q1^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [8] c_2(x1) = [1] x1 + [0] y^#(x1) = [1] x1 + [0] c_3(x1) = [1] x1 + [15] q2^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [3] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [1] x1 + [0] c_10(x1) = [1] x1 + [0] q3^#(x1) = [1] x1 + [1] c_11(x1) = [1] x1 + [0] c_12() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1)))) , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1)))) , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1))))} and weakly orienting the rules { a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1)))) , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1)))) , q3(bl(x1)) -> bl(q4(x1)) , q2(x(x1)) -> x(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1)))) , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1)))) , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] a(x1) = [1] x1 + [0] x(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] y(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] bl(x1) = [1] x1 + [1] q4(x1) = [1] x1 + [1] q0^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] q1^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [0] y^#(x1) = [1] x1 + [4] c_3(x1) = [1] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [1] x1 + [0] c_10(x1) = [1] x1 + [0] q3^#(x1) = [1] x1 + [1] c_11(x1) = [1] x1 + [0] c_12() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0^#(a(x1)) -> c_0(q1^#(x1))} and weakly orienting the rules { y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1)))) , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1)))) , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1)))) , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1)))) , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1)))) , q3(bl(x1)) -> bl(q4(x1)) , q2(x(x1)) -> x(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0^#(a(x1)) -> c_0(q1^#(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] a(x1) = [1] x1 + [0] x(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] y(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [13] bl(x1) = [1] x1 + [4] q4(x1) = [1] x1 + [5] q0^#(x1) = [1] x1 + [3] c_0(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [8] a^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [8] y^#(x1) = [1] x1 + [15] c_3(x1) = [1] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [15] c_8(x1) = [1] x1 + [1] c_9(x1) = [1] x1 + [2] c_10(x1) = [1] x1 + [0] q3^#(x1) = [1] x1 + [1] c_11(x1) = [1] x1 + [1] c_12() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3^#(y(x1)) -> c_11(y^#(q3(x1)))} and weakly orienting the rules { q0^#(a(x1)) -> c_0(q1^#(x1)) , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1)))) , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1)))) , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1)))) , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1)))) , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1)))) , q3(bl(x1)) -> bl(q4(x1)) , q2(x(x1)) -> x(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3^#(y(x1)) -> c_11(y^#(q3(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] a(x1) = [1] x1 + [0] x(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] y(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] bl(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [1] y^#(x1) = [1] x1 + [5] c_3(x1) = [1] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [1] x1 + [0] c_9(x1) = [1] x1 + [1] c_10(x1) = [1] x1 + [1] q3^#(x1) = [1] x1 + [9] c_11(x1) = [1] x1 + [1] c_12() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q2^#(x(x1)) -> c_9(q0^#(x1)) , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1))))} and weakly orienting the rules { q3^#(y(x1)) -> c_11(y^#(q3(x1))) , q0^#(a(x1)) -> c_0(q1^#(x1)) , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1)))) , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1)))) , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1)))) , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1)))) , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1)))) , q3(bl(x1)) -> bl(q4(x1)) , q2(x(x1)) -> x(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q2^#(x(x1)) -> c_9(q0^#(x1)) , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] a(x1) = [1] x1 + [0] x(x1) = [1] x1 + [3] q1(x1) = [1] x1 + [1] y(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [14] bl(x1) = [1] x1 + [2] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [2] c_0(x1) = [1] x1 + [1] q1^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [1] y^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [1] x1 + [0] c_10(x1) = [1] x1 + [2] q3^#(x1) = [1] x1 + [15] c_11(x1) = [1] x1 + [0] c_12() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q0^#(y(x1)) -> c_10(y^#(q3(x1))) , q1^#(y(x1)) -> c_2(y^#(q1(x1))) , q1^#(a(x1)) -> c_1(a^#(q1(x1)))} and weakly orienting the rules { q2^#(x(x1)) -> c_9(q0^#(x1)) , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1)))) , q3^#(y(x1)) -> c_11(y^#(q3(x1))) , q0^#(a(x1)) -> c_0(q1^#(x1)) , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1)))) , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1)))) , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1)))) , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1)))) , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1)))) , q3(bl(x1)) -> bl(q4(x1)) , q2(x(x1)) -> x(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q0^#(y(x1)) -> c_10(y^#(q3(x1))) , q1^#(y(x1)) -> c_2(y^#(q1(x1))) , q1^#(a(x1)) -> c_1(a^#(q1(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] a(x1) = [1] x1 + [0] x(x1) = [1] x1 + [8] q1(x1) = [1] x1 + [1] y(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] bl(x1) = [1] x1 + [15] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [4] c_0(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [4] c_1(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [0] y^#(x1) = [1] x1 + [0] c_3(x1) = [1] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [1] x1 + [1] c_10(x1) = [1] x1 + [0] q3^#(x1) = [1] x1 + [9] c_11(x1) = [1] x1 + [0] c_12() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a(q1(b(x1))) -> q2(a(y(x1))) , y(q1(b(x1))) -> q2(y(y(x1)))} and weakly orienting the rules { q0^#(y(x1)) -> c_10(y^#(q3(x1))) , q1^#(y(x1)) -> c_2(y^#(q1(x1))) , q1^#(a(x1)) -> c_1(a^#(q1(x1))) , q2^#(x(x1)) -> c_9(q0^#(x1)) , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1)))) , q3^#(y(x1)) -> c_11(y^#(q3(x1))) , q0^#(a(x1)) -> c_0(q1^#(x1)) , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1)))) , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1)))) , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1)))) , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1)))) , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1)))) , q3(bl(x1)) -> bl(q4(x1)) , q2(x(x1)) -> x(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a(q1(b(x1))) -> q2(a(y(x1))) , y(q1(b(x1))) -> q2(y(y(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] a(x1) = [1] x1 + [0] x(x1) = [1] x1 + [2] q1(x1) = [1] x1 + [1] y(x1) = [1] x1 + [0] b(x1) = [1] x1 + [10] q2(x1) = [1] x1 + [4] q3(x1) = [1] x1 + [1] bl(x1) = [1] x1 + [2] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [0] y^#(x1) = [1] x1 + [0] c_3(x1) = [1] x1 + [1] q2^#(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [9] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [1] c_9(x1) = [1] x1 + [0] c_10(x1) = [1] x1 + [0] q3^#(x1) = [1] x1 + [9] c_11(x1) = [1] x1 + [2] c_12() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(a(x1)) -> x(q1(x1))} and weakly orienting the rules { a(q1(b(x1))) -> q2(a(y(x1))) , y(q1(b(x1))) -> q2(y(y(x1))) , q0^#(y(x1)) -> c_10(y^#(q3(x1))) , q1^#(y(x1)) -> c_2(y^#(q1(x1))) , q1^#(a(x1)) -> c_1(a^#(q1(x1))) , q2^#(x(x1)) -> c_9(q0^#(x1)) , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1)))) , q3^#(y(x1)) -> c_11(y^#(q3(x1))) , q0^#(a(x1)) -> c_0(q1^#(x1)) , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1)))) , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1)))) , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1)))) , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1)))) , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1)))) , q3(bl(x1)) -> bl(q4(x1)) , q2(x(x1)) -> x(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(a(x1)) -> x(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] a(x1) = [1] x1 + [2] x(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] y(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [0] bl(x1) = [1] x1 + [1] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [3] c_2(x1) = [1] x1 + [0] y^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [1] x1 + [0] c_10(x1) = [1] x1 + [0] q3^#(x1) = [1] x1 + [9] c_11(x1) = [1] x1 + [7] c_12() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(y(x1)) -> y(q3(x1))} and weakly orienting the rules { q0(a(x1)) -> x(q1(x1)) , a(q1(b(x1))) -> q2(a(y(x1))) , y(q1(b(x1))) -> q2(y(y(x1))) , q0^#(y(x1)) -> c_10(y^#(q3(x1))) , q1^#(y(x1)) -> c_2(y^#(q1(x1))) , q1^#(a(x1)) -> c_1(a^#(q1(x1))) , q2^#(x(x1)) -> c_9(q0^#(x1)) , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1)))) , q3^#(y(x1)) -> c_11(y^#(q3(x1))) , q0^#(a(x1)) -> c_0(q1^#(x1)) , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1)))) , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1)))) , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1)))) , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1)))) , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1)))) , q3(bl(x1)) -> bl(q4(x1)) , q2(x(x1)) -> x(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(y(x1)) -> y(q3(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [4] a(x1) = [1] x1 + [0] x(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] y(x1) = [1] x1 + [0] b(x1) = [1] x1 + [7] q2(x1) = [1] x1 + [8] q3(x1) = [1] x1 + [1] bl(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [4] c_0(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [4] c_1(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [2] c_2(x1) = [1] x1 + [1] y^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] q2^#(x1) = [1] x1 + [9] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [1] x1 + [5] c_10(x1) = [1] x1 + [1] q3^#(x1) = [1] x1 + [9] c_11(x1) = [1] x1 + [1] c_12() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(a(x1)) -> a(q1(x1)) , q1(y(x1)) -> y(q1(x1)) , a(q2(a(x1))) -> q2(a(a(x1))) , a(q2(y(x1))) -> q2(a(y(x1))) , y(q2(a(x1))) -> q2(y(a(x1))) , y(q2(y(x1))) -> q2(y(y(x1))) , q3(y(x1)) -> y(q3(x1))} Weak Rules: { q0(y(x1)) -> y(q3(x1)) , q0(a(x1)) -> x(q1(x1)) , a(q1(b(x1))) -> q2(a(y(x1))) , y(q1(b(x1))) -> q2(y(y(x1))) , q0^#(y(x1)) -> c_10(y^#(q3(x1))) , q1^#(y(x1)) -> c_2(y^#(q1(x1))) , q1^#(a(x1)) -> c_1(a^#(q1(x1))) , q2^#(x(x1)) -> c_9(q0^#(x1)) , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1)))) , q3^#(y(x1)) -> c_11(y^#(q3(x1))) , q0^#(a(x1)) -> c_0(q1^#(x1)) , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1)))) , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1)))) , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1)))) , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1)))) , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1)))) , q3(bl(x1)) -> bl(q4(x1)) , q2(x(x1)) -> x(q0(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(a(x1)) -> a(q1(x1)) , q1(y(x1)) -> y(q1(x1)) , a(q2(a(x1))) -> q2(a(a(x1))) , a(q2(y(x1))) -> q2(a(y(x1))) , y(q2(a(x1))) -> q2(y(a(x1))) , y(q2(y(x1))) -> q2(y(y(x1))) , q3(y(x1)) -> y(q3(x1))} Weak Rules: { q0(y(x1)) -> y(q3(x1)) , q0(a(x1)) -> x(q1(x1)) , a(q1(b(x1))) -> q2(a(y(x1))) , y(q1(b(x1))) -> q2(y(y(x1))) , q0^#(y(x1)) -> c_10(y^#(q3(x1))) , q1^#(y(x1)) -> c_2(y^#(q1(x1))) , q1^#(a(x1)) -> c_1(a^#(q1(x1))) , q2^#(x(x1)) -> c_9(q0^#(x1)) , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1)))) , q3^#(y(x1)) -> c_11(y^#(q3(x1))) , q0^#(a(x1)) -> c_0(q1^#(x1)) , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1)))) , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1)))) , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1)))) , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1)))) , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1)))) , q3(bl(x1)) -> bl(q4(x1)) , q2(x(x1)) -> x(q0(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { x_0(3) -> 3 , x_0(6) -> 3 , x_0(9) -> 3 , x_0(10) -> 3 , b_0(3) -> 6 , b_0(6) -> 6 , b_0(9) -> 6 , b_0(10) -> 6 , bl_0(3) -> 9 , bl_0(6) -> 9 , bl_0(9) -> 9 , bl_0(10) -> 9 , q4_0(3) -> 10 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , q0^#_0(3) -> 11 , q0^#_0(6) -> 11 , q0^#_0(9) -> 11 , q0^#_0(10) -> 11 , q1^#_0(3) -> 13 , q1^#_0(6) -> 13 , q1^#_0(9) -> 13 , q1^#_0(10) -> 13 , a^#_0(3) -> 15 , a^#_0(6) -> 15 , a^#_0(9) -> 15 , a^#_0(10) -> 15 , y^#_0(3) -> 17 , y^#_0(6) -> 17 , y^#_0(9) -> 17 , y^#_0(10) -> 17 , q2^#_0(3) -> 19 , q2^#_0(6) -> 19 , q2^#_0(9) -> 19 , q2^#_0(10) -> 19 , c_9_0(11) -> 19 , q3^#_0(3) -> 27 , q3^#_0(6) -> 27 , q3^#_0(9) -> 27 , q3^#_0(10) -> 27} 2) {q3^#(y(x1)) -> c_11(y^#(q3(x1)))} The usable rules for this path are the following: { q3(y(x1)) -> y(q3(x1)) , q3(bl(x1)) -> bl(q4(x1)) , y(q1(b(x1))) -> q2(y(y(x1))) , y(q2(a(x1))) -> q2(y(a(x1))) , y(q2(y(x1))) -> q2(y(y(x1))) , a(q1(b(x1))) -> q2(a(y(x1))) , a(q2(a(x1))) -> q2(a(a(x1))) , a(q2(y(x1))) -> q2(a(y(x1))) , q2(x(x1)) -> x(q0(x1)) , q0(a(x1)) -> x(q1(x1)) , q0(y(x1)) -> y(q3(x1)) , q1(a(x1)) -> a(q1(x1)) , q1(y(x1)) -> y(q1(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q3(y(x1)) -> y(q3(x1)) , q3(bl(x1)) -> bl(q4(x1)) , y(q1(b(x1))) -> q2(y(y(x1))) , y(q2(a(x1))) -> q2(y(a(x1))) , y(q2(y(x1))) -> q2(y(y(x1))) , a(q1(b(x1))) -> q2(a(y(x1))) , a(q2(a(x1))) -> q2(a(a(x1))) , a(q2(y(x1))) -> q2(a(y(x1))) , q2(x(x1)) -> x(q0(x1)) , q0(a(x1)) -> x(q1(x1)) , q0(y(x1)) -> y(q3(x1)) , q1(a(x1)) -> a(q1(x1)) , q1(y(x1)) -> y(q1(x1)) , q3^#(y(x1)) -> c_11(y^#(q3(x1)))} Details: We apply the weight gap principle, strictly orienting the rules { q3(bl(x1)) -> bl(q4(x1)) , q0(a(x1)) -> x(q1(x1)) , q0(y(x1)) -> y(q3(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q3(bl(x1)) -> bl(q4(x1)) , q0(a(x1)) -> x(q1(x1)) , q0(y(x1)) -> y(q3(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [4] a(x1) = [1] x1 + [4] x(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] y(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] bl(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] a^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] y^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [1] c_11(x1) = [1] x1 + [0] c_12() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3^#(y(x1)) -> c_11(y^#(q3(x1)))} and weakly orienting the rules { q3(bl(x1)) -> bl(q4(x1)) , q0(a(x1)) -> x(q1(x1)) , q0(y(x1)) -> y(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3^#(y(x1)) -> c_11(y^#(q3(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] a(x1) = [1] x1 + [0] x(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] y(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] bl(x1) = [1] x1 + [7] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] a^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] y^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [5] c_11(x1) = [1] x1 + [0] c_12() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { y(q1(b(x1))) -> q2(y(y(x1))) , a(q1(b(x1))) -> q2(a(y(x1)))} and weakly orienting the rules { q3^#(y(x1)) -> c_11(y^#(q3(x1))) , q3(bl(x1)) -> bl(q4(x1)) , q0(a(x1)) -> x(q1(x1)) , q0(y(x1)) -> y(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { y(q1(b(x1))) -> q2(y(y(x1))) , a(q1(b(x1))) -> q2(a(y(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [8] a(x1) = [1] x1 + [2] x(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [8] y(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [1] bl(x1) = [1] x1 + [15] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] a^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] y^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [9] c_11(x1) = [1] x1 + [0] c_12() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q2(x(x1)) -> x(q0(x1))} and weakly orienting the rules { y(q1(b(x1))) -> q2(y(y(x1))) , a(q1(b(x1))) -> q2(a(y(x1))) , q3^#(y(x1)) -> c_11(y^#(q3(x1))) , q3(bl(x1)) -> bl(q4(x1)) , q0(a(x1)) -> x(q1(x1)) , q0(y(x1)) -> y(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2(x(x1)) -> x(q0(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [4] a(x1) = [1] x1 + [0] x(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] y(x1) = [1] x1 + [0] b(x1) = [1] x1 + [12] q2(x1) = [1] x1 + [8] q3(x1) = [1] x1 + [1] bl(x1) = [1] x1 + [15] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] a^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] y^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [11] c_11(x1) = [1] x1 + [7] c_12() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q3(y(x1)) -> y(q3(x1)) , y(q2(a(x1))) -> q2(y(a(x1))) , y(q2(y(x1))) -> q2(y(y(x1))) , a(q2(a(x1))) -> q2(a(a(x1))) , a(q2(y(x1))) -> q2(a(y(x1))) , q1(a(x1)) -> a(q1(x1)) , q1(y(x1)) -> y(q1(x1))} Weak Rules: { q2(x(x1)) -> x(q0(x1)) , y(q1(b(x1))) -> q2(y(y(x1))) , a(q1(b(x1))) -> q2(a(y(x1))) , q3^#(y(x1)) -> c_11(y^#(q3(x1))) , q3(bl(x1)) -> bl(q4(x1)) , q0(a(x1)) -> x(q1(x1)) , q0(y(x1)) -> y(q3(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q3(y(x1)) -> y(q3(x1)) , y(q2(a(x1))) -> q2(y(a(x1))) , y(q2(y(x1))) -> q2(y(y(x1))) , a(q2(a(x1))) -> q2(a(a(x1))) , a(q2(y(x1))) -> q2(a(y(x1))) , q1(a(x1)) -> a(q1(x1)) , q1(y(x1)) -> y(q1(x1))} Weak Rules: { q2(x(x1)) -> x(q0(x1)) , y(q1(b(x1))) -> q2(y(y(x1))) , a(q1(b(x1))) -> q2(a(y(x1))) , q3^#(y(x1)) -> c_11(y^#(q3(x1))) , q3(bl(x1)) -> bl(q4(x1)) , q0(a(x1)) -> x(q1(x1)) , q0(y(x1)) -> y(q3(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { x_0(3) -> 3 , x_0(6) -> 3 , x_0(9) -> 3 , x_0(10) -> 3 , b_0(3) -> 6 , b_0(6) -> 6 , b_0(9) -> 6 , b_0(10) -> 6 , bl_0(3) -> 9 , bl_0(6) -> 9 , bl_0(9) -> 9 , bl_0(10) -> 9 , q4_0(3) -> 10 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , y^#_0(3) -> 17 , y^#_0(6) -> 17 , y^#_0(9) -> 17 , y^#_0(10) -> 17 , q3^#_0(3) -> 27 , q3^#_0(6) -> 27 , q3^#_0(9) -> 27 , q3^#_0(10) -> 27} 3) {q3^#(bl(x1)) -> c_12()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: q0(x1) = [0] x1 + [0] a(x1) = [0] x1 + [0] x(x1) = [0] x1 + [0] q1(x1) = [0] x1 + [0] y(x1) = [0] x1 + [0] b(x1) = [0] x1 + [0] q2(x1) = [0] x1 + [0] q3(x1) = [0] x1 + [0] bl(x1) = [0] x1 + [0] q4(x1) = [0] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] a^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] y^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {q3^#(bl(x1)) -> c_12()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {q3^#(bl(x1)) -> c_12()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3^#(bl(x1)) -> c_12()} Details: Interpretation Functions: q0(x1) = [0] x1 + [0] a(x1) = [0] x1 + [0] x(x1) = [0] x1 + [0] q1(x1) = [0] x1 + [0] y(x1) = [0] x1 + [0] b(x1) = [0] x1 + [0] q2(x1) = [0] x1 + [0] q3(x1) = [0] x1 + [0] bl(x1) = [1] x1 + [0] q4(x1) = [0] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] a^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] y^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [1] c_11(x1) = [0] x1 + [0] c_12() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {q3^#(bl(x1)) -> c_12()} Details: The given problem does not contain any strict rules