'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  q0(a(x1)) -> x(q1(x1))
     , q1(a(x1)) -> a(q1(x1))
     , q1(y(x1)) -> y(q1(x1))
     , a(q1(b(x1))) -> q2(a(y(x1)))
     , a(q2(a(x1))) -> q2(a(a(x1)))
     , a(q2(y(x1))) -> q2(a(y(x1)))
     , y(q1(b(x1))) -> q2(y(y(x1)))
     , y(q2(a(x1))) -> q2(y(a(x1)))
     , y(q2(y(x1))) -> q2(y(y(x1)))
     , q2(x(x1)) -> x(q0(x1))
     , q0(y(x1)) -> y(q3(x1))
     , q3(y(x1)) -> y(q3(x1))
     , q3(bl(x1)) -> bl(q4(x1))}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  q0^#(a(x1)) -> c_0(q1^#(x1))
    , q1^#(a(x1)) -> c_1(a^#(q1(x1)))
    , q1^#(y(x1)) -> c_2(y^#(q1(x1)))
    , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1))))
    , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))
    , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1))))
    , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1))))
    , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))
    , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))
    , q2^#(x(x1)) -> c_9(q0^#(x1))
    , q0^#(y(x1)) -> c_10(y^#(q3(x1)))
    , q3^#(y(x1)) -> c_11(y^#(q3(x1)))
    , q3^#(bl(x1)) -> c_12()}
  
  The usable rules are:
   {  q1(a(x1)) -> a(q1(x1))
    , q1(y(x1)) -> y(q1(x1))
    , a(q1(b(x1))) -> q2(a(y(x1)))
    , a(q2(a(x1))) -> q2(a(a(x1)))
    , a(q2(y(x1))) -> q2(a(y(x1)))
    , y(q1(b(x1))) -> q2(y(y(x1)))
    , y(q2(a(x1))) -> q2(y(a(x1)))
    , y(q2(y(x1))) -> q2(y(y(x1)))
    , q3(y(x1)) -> y(q3(x1))
    , q3(bl(x1)) -> bl(q4(x1))
    , q2(x(x1)) -> x(q0(x1))
    , q0(a(x1)) -> x(q1(x1))
    , q0(y(x1)) -> y(q3(x1))}
  
  The estimated dependency graph contains the following edges:
   {q0^#(a(x1)) -> c_0(q1^#(x1))}
     ==> {q1^#(y(x1)) -> c_2(y^#(q1(x1)))}
   {q0^#(a(x1)) -> c_0(q1^#(x1))}
     ==> {q1^#(a(x1)) -> c_1(a^#(q1(x1)))}
   {q1^#(a(x1)) -> c_1(a^#(q1(x1)))}
     ==> {a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1))))}
   {q1^#(a(x1)) -> c_1(a^#(q1(x1)))}
     ==> {a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))}
   {q1^#(a(x1)) -> c_1(a^#(q1(x1)))}
     ==> {a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1))))}
   {q1^#(y(x1)) -> c_2(y^#(q1(x1)))}
     ==> {y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))}
   {q1^#(y(x1)) -> c_2(y^#(q1(x1)))}
     ==> {y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))}
   {q1^#(y(x1)) -> c_2(y^#(q1(x1)))}
     ==> {y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1))))}
   {a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1))))}
     ==> {q2^#(x(x1)) -> c_9(q0^#(x1))}
   {a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))}
     ==> {q2^#(x(x1)) -> c_9(q0^#(x1))}
   {a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1))))}
     ==> {q2^#(x(x1)) -> c_9(q0^#(x1))}
   {y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1))))}
     ==> {q2^#(x(x1)) -> c_9(q0^#(x1))}
   {y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))}
     ==> {q2^#(x(x1)) -> c_9(q0^#(x1))}
   {y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))}
     ==> {q2^#(x(x1)) -> c_9(q0^#(x1))}
   {q2^#(x(x1)) -> c_9(q0^#(x1))}
     ==> {q0^#(y(x1)) -> c_10(y^#(q3(x1)))}
   {q2^#(x(x1)) -> c_9(q0^#(x1))}
     ==> {q0^#(a(x1)) -> c_0(q1^#(x1))}
   {q0^#(y(x1)) -> c_10(y^#(q3(x1)))}
     ==> {y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))}
   {q0^#(y(x1)) -> c_10(y^#(q3(x1)))}
     ==> {y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))}
   {q3^#(y(x1)) -> c_11(y^#(q3(x1)))}
     ==> {y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))}
   {q3^#(y(x1)) -> c_11(y^#(q3(x1)))}
     ==> {y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))}
  
  We consider the following path(s):
   1) {  q3^#(y(x1)) -> c_11(y^#(q3(x1)))
       , q0^#(a(x1)) -> c_0(q1^#(x1))
       , q2^#(x(x1)) -> c_9(q0^#(x1))
       , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))
       , q0^#(y(x1)) -> c_10(y^#(q3(x1)))
       , q1^#(y(x1)) -> c_2(y^#(q1(x1)))
       , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))
       , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1))))
       , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1))))
       , q1^#(a(x1)) -> c_1(a^#(q1(x1)))
       , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))
       , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1))))}
      
      The usable rules for this path are the following:
      {  q1(a(x1)) -> a(q1(x1))
       , q1(y(x1)) -> y(q1(x1))
       , a(q1(b(x1))) -> q2(a(y(x1)))
       , a(q2(a(x1))) -> q2(a(a(x1)))
       , a(q2(y(x1))) -> q2(a(y(x1)))
       , y(q1(b(x1))) -> q2(y(y(x1)))
       , y(q2(a(x1))) -> q2(y(a(x1)))
       , y(q2(y(x1))) -> q2(y(y(x1)))
       , q3(y(x1)) -> y(q3(x1))
       , q3(bl(x1)) -> bl(q4(x1))
       , q2(x(x1)) -> x(q0(x1))
       , q0(a(x1)) -> x(q1(x1))
       , q0(y(x1)) -> y(q3(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q1(a(x1)) -> a(q1(x1))
               , q1(y(x1)) -> y(q1(x1))
               , a(q1(b(x1))) -> q2(a(y(x1)))
               , a(q2(a(x1))) -> q2(a(a(x1)))
               , a(q2(y(x1))) -> q2(a(y(x1)))
               , y(q1(b(x1))) -> q2(y(y(x1)))
               , y(q2(a(x1))) -> q2(y(a(x1)))
               , y(q2(y(x1))) -> q2(y(y(x1)))
               , q3(y(x1)) -> y(q3(x1))
               , q3(bl(x1)) -> bl(q4(x1))
               , q2(x(x1)) -> x(q0(x1))
               , q0(a(x1)) -> x(q1(x1))
               , q0(y(x1)) -> y(q3(x1))
               , q3^#(y(x1)) -> c_11(y^#(q3(x1)))
               , q0^#(a(x1)) -> c_0(q1^#(x1))
               , q2^#(x(x1)) -> c_9(q0^#(x1))
               , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))
               , q0^#(y(x1)) -> c_10(y^#(q3(x1)))
               , q1^#(y(x1)) -> c_2(y^#(q1(x1)))
               , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))
               , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1))))
               , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1))))
               , q1^#(a(x1)) -> c_1(a^#(q1(x1)))
               , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))
               , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  q3(bl(x1)) -> bl(q4(x1))
             , q2(x(x1)) -> x(q0(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q3(bl(x1)) -> bl(q4(x1))
               , q2(x(x1)) -> x(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  a(x1) = [1] x1 + [0]
                  x(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  y(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  bl(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  q1^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [8]
                  a^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  y^#(x1) = [1] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  q3^#(x1) = [1] x1 + [1]
                  c_11(x1) = [1] x1 + [0]
                  c_12() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1))))
             , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))}
            and weakly orienting the rules
            {  q3(bl(x1)) -> bl(q4(x1))
             , q2(x(x1)) -> x(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1))))
               , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  a(x1) = [1] x1 + [0]
                  x(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  y(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  bl(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  q1^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [8]
                  c_2(x1) = [1] x1 + [0]
                  y^#(x1) = [1] x1 + [0]
                  c_3(x1) = [1] x1 + [15]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [3]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  q3^#(x1) = [1] x1 + [1]
                  c_11(x1) = [1] x1 + [0]
                  c_12() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))
             , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))
             , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1))))}
            and weakly orienting the rules
            {  a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1))))
             , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))
             , q3(bl(x1)) -> bl(q4(x1))
             , q2(x(x1)) -> x(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))
               , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))
               , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  a(x1) = [1] x1 + [0]
                  x(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  y(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  bl(x1) = [1] x1 + [1]
                  q4(x1) = [1] x1 + [1]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  q1^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  y^#(x1) = [1] x1 + [4]
                  c_3(x1) = [1] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  q3^#(x1) = [1] x1 + [1]
                  c_11(x1) = [1] x1 + [0]
                  c_12() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0^#(a(x1)) -> c_0(q1^#(x1))}
            and weakly orienting the rules
            {  y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))
             , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))
             , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1))))
             , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1))))
             , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))
             , q3(bl(x1)) -> bl(q4(x1))
             , q2(x(x1)) -> x(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0^#(a(x1)) -> c_0(q1^#(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  a(x1) = [1] x1 + [0]
                  x(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  y(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [13]
                  bl(x1) = [1] x1 + [4]
                  q4(x1) = [1] x1 + [5]
                  q0^#(x1) = [1] x1 + [3]
                  c_0(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [8]
                  a^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [8]
                  y^#(x1) = [1] x1 + [15]
                  c_3(x1) = [1] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [15]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [1] x1 + [2]
                  c_10(x1) = [1] x1 + [0]
                  q3^#(x1) = [1] x1 + [1]
                  c_11(x1) = [1] x1 + [1]
                  c_12() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3^#(y(x1)) -> c_11(y^#(q3(x1)))}
            and weakly orienting the rules
            {  q0^#(a(x1)) -> c_0(q1^#(x1))
             , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))
             , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))
             , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1))))
             , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1))))
             , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))
             , q3(bl(x1)) -> bl(q4(x1))
             , q2(x(x1)) -> x(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3^#(y(x1)) -> c_11(y^#(q3(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  a(x1) = [1] x1 + [0]
                  x(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  y(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  bl(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  y^#(x1) = [1] x1 + [5]
                  c_3(x1) = [1] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [1]
                  q3^#(x1) = [1] x1 + [9]
                  c_11(x1) = [1] x1 + [1]
                  c_12() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q2^#(x(x1)) -> c_9(q0^#(x1))
             , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1))))}
            and weakly orienting the rules
            {  q3^#(y(x1)) -> c_11(y^#(q3(x1)))
             , q0^#(a(x1)) -> c_0(q1^#(x1))
             , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))
             , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))
             , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1))))
             , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1))))
             , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))
             , q3(bl(x1)) -> bl(q4(x1))
             , q2(x(x1)) -> x(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q2^#(x(x1)) -> c_9(q0^#(x1))
               , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  a(x1) = [1] x1 + [0]
                  x(x1) = [1] x1 + [3]
                  q1(x1) = [1] x1 + [1]
                  y(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [14]
                  bl(x1) = [1] x1 + [2]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [2]
                  c_0(x1) = [1] x1 + [1]
                  q1^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  y^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [2]
                  q3^#(x1) = [1] x1 + [15]
                  c_11(x1) = [1] x1 + [0]
                  c_12() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q0^#(y(x1)) -> c_10(y^#(q3(x1)))
             , q1^#(y(x1)) -> c_2(y^#(q1(x1)))
             , q1^#(a(x1)) -> c_1(a^#(q1(x1)))}
            and weakly orienting the rules
            {  q2^#(x(x1)) -> c_9(q0^#(x1))
             , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1))))
             , q3^#(y(x1)) -> c_11(y^#(q3(x1)))
             , q0^#(a(x1)) -> c_0(q1^#(x1))
             , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))
             , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))
             , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1))))
             , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1))))
             , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))
             , q3(bl(x1)) -> bl(q4(x1))
             , q2(x(x1)) -> x(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q0^#(y(x1)) -> c_10(y^#(q3(x1)))
               , q1^#(y(x1)) -> c_2(y^#(q1(x1)))
               , q1^#(a(x1)) -> c_1(a^#(q1(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  a(x1) = [1] x1 + [0]
                  x(x1) = [1] x1 + [8]
                  q1(x1) = [1] x1 + [1]
                  y(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  bl(x1) = [1] x1 + [15]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [4]
                  c_0(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [4]
                  c_1(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  y^#(x1) = [1] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  q3^#(x1) = [1] x1 + [9]
                  c_11(x1) = [1] x1 + [0]
                  c_12() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a(q1(b(x1))) -> q2(a(y(x1)))
             , y(q1(b(x1))) -> q2(y(y(x1)))}
            and weakly orienting the rules
            {  q0^#(y(x1)) -> c_10(y^#(q3(x1)))
             , q1^#(y(x1)) -> c_2(y^#(q1(x1)))
             , q1^#(a(x1)) -> c_1(a^#(q1(x1)))
             , q2^#(x(x1)) -> c_9(q0^#(x1))
             , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1))))
             , q3^#(y(x1)) -> c_11(y^#(q3(x1)))
             , q0^#(a(x1)) -> c_0(q1^#(x1))
             , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))
             , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))
             , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1))))
             , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1))))
             , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))
             , q3(bl(x1)) -> bl(q4(x1))
             , q2(x(x1)) -> x(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a(q1(b(x1))) -> q2(a(y(x1)))
               , y(q1(b(x1))) -> q2(y(y(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  a(x1) = [1] x1 + [0]
                  x(x1) = [1] x1 + [2]
                  q1(x1) = [1] x1 + [1]
                  y(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [10]
                  q2(x1) = [1] x1 + [4]
                  q3(x1) = [1] x1 + [1]
                  bl(x1) = [1] x1 + [2]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  y^#(x1) = [1] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [9]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  q3^#(x1) = [1] x1 + [9]
                  c_11(x1) = [1] x1 + [2]
                  c_12() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(a(x1)) -> x(q1(x1))}
            and weakly orienting the rules
            {  a(q1(b(x1))) -> q2(a(y(x1)))
             , y(q1(b(x1))) -> q2(y(y(x1)))
             , q0^#(y(x1)) -> c_10(y^#(q3(x1)))
             , q1^#(y(x1)) -> c_2(y^#(q1(x1)))
             , q1^#(a(x1)) -> c_1(a^#(q1(x1)))
             , q2^#(x(x1)) -> c_9(q0^#(x1))
             , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1))))
             , q3^#(y(x1)) -> c_11(y^#(q3(x1)))
             , q0^#(a(x1)) -> c_0(q1^#(x1))
             , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))
             , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))
             , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1))))
             , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1))))
             , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))
             , q3(bl(x1)) -> bl(q4(x1))
             , q2(x(x1)) -> x(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(a(x1)) -> x(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  a(x1) = [1] x1 + [2]
                  x(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  y(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [0]
                  bl(x1) = [1] x1 + [1]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [3]
                  c_2(x1) = [1] x1 + [0]
                  y^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  q3^#(x1) = [1] x1 + [9]
                  c_11(x1) = [1] x1 + [7]
                  c_12() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(y(x1)) -> y(q3(x1))}
            and weakly orienting the rules
            {  q0(a(x1)) -> x(q1(x1))
             , a(q1(b(x1))) -> q2(a(y(x1)))
             , y(q1(b(x1))) -> q2(y(y(x1)))
             , q0^#(y(x1)) -> c_10(y^#(q3(x1)))
             , q1^#(y(x1)) -> c_2(y^#(q1(x1)))
             , q1^#(a(x1)) -> c_1(a^#(q1(x1)))
             , q2^#(x(x1)) -> c_9(q0^#(x1))
             , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1))))
             , q3^#(y(x1)) -> c_11(y^#(q3(x1)))
             , q0^#(a(x1)) -> c_0(q1^#(x1))
             , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))
             , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))
             , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1))))
             , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1))))
             , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))
             , q3(bl(x1)) -> bl(q4(x1))
             , q2(x(x1)) -> x(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(y(x1)) -> y(q3(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [4]
                  a(x1) = [1] x1 + [0]
                  x(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  y(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [7]
                  q2(x1) = [1] x1 + [8]
                  q3(x1) = [1] x1 + [1]
                  bl(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [4]
                  c_0(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [4]
                  c_1(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [2]
                  c_2(x1) = [1] x1 + [1]
                  y^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  q2^#(x1) = [1] x1 + [9]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [1] x1 + [5]
                  c_10(x1) = [1] x1 + [1]
                  q3^#(x1) = [1] x1 + [9]
                  c_11(x1) = [1] x1 + [1]
                  c_12() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q1(a(x1)) -> a(q1(x1))
                 , q1(y(x1)) -> y(q1(x1))
                 , a(q2(a(x1))) -> q2(a(a(x1)))
                 , a(q2(y(x1))) -> q2(a(y(x1)))
                 , y(q2(a(x1))) -> q2(y(a(x1)))
                 , y(q2(y(x1))) -> q2(y(y(x1)))
                 , q3(y(x1)) -> y(q3(x1))}
              Weak Rules:
                {  q0(y(x1)) -> y(q3(x1))
                 , q0(a(x1)) -> x(q1(x1))
                 , a(q1(b(x1))) -> q2(a(y(x1)))
                 , y(q1(b(x1))) -> q2(y(y(x1)))
                 , q0^#(y(x1)) -> c_10(y^#(q3(x1)))
                 , q1^#(y(x1)) -> c_2(y^#(q1(x1)))
                 , q1^#(a(x1)) -> c_1(a^#(q1(x1)))
                 , q2^#(x(x1)) -> c_9(q0^#(x1))
                 , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1))))
                 , q3^#(y(x1)) -> c_11(y^#(q3(x1)))
                 , q0^#(a(x1)) -> c_0(q1^#(x1))
                 , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))
                 , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))
                 , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1))))
                 , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1))))
                 , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))
                 , q3(bl(x1)) -> bl(q4(x1))
                 , q2(x(x1)) -> x(q0(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q1(a(x1)) -> a(q1(x1))
                   , q1(y(x1)) -> y(q1(x1))
                   , a(q2(a(x1))) -> q2(a(a(x1)))
                   , a(q2(y(x1))) -> q2(a(y(x1)))
                   , y(q2(a(x1))) -> q2(y(a(x1)))
                   , y(q2(y(x1))) -> q2(y(y(x1)))
                   , q3(y(x1)) -> y(q3(x1))}
                Weak Rules:
                  {  q0(y(x1)) -> y(q3(x1))
                   , q0(a(x1)) -> x(q1(x1))
                   , a(q1(b(x1))) -> q2(a(y(x1)))
                   , y(q1(b(x1))) -> q2(y(y(x1)))
                   , q0^#(y(x1)) -> c_10(y^#(q3(x1)))
                   , q1^#(y(x1)) -> c_2(y^#(q1(x1)))
                   , q1^#(a(x1)) -> c_1(a^#(q1(x1)))
                   , q2^#(x(x1)) -> c_9(q0^#(x1))
                   , a^#(q1(b(x1))) -> c_3(q2^#(a(y(x1))))
                   , q3^#(y(x1)) -> c_11(y^#(q3(x1)))
                   , q0^#(a(x1)) -> c_0(q1^#(x1))
                   , y^#(q2(y(x1))) -> c_8(q2^#(y(y(x1))))
                   , y^#(q2(a(x1))) -> c_7(q2^#(y(a(x1))))
                   , y^#(q1(b(x1))) -> c_6(q2^#(y(y(x1))))
                   , a^#(q2(y(x1))) -> c_5(q2^#(a(y(x1))))
                   , a^#(q2(a(x1))) -> c_4(q2^#(a(a(x1))))
                   , q3(bl(x1)) -> bl(q4(x1))
                   , q2(x(x1)) -> x(q0(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  x_0(3) -> 3
                 , x_0(6) -> 3
                 , x_0(9) -> 3
                 , x_0(10) -> 3
                 , b_0(3) -> 6
                 , b_0(6) -> 6
                 , b_0(9) -> 6
                 , b_0(10) -> 6
                 , bl_0(3) -> 9
                 , bl_0(6) -> 9
                 , bl_0(9) -> 9
                 , bl_0(10) -> 9
                 , q4_0(3) -> 10
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , q0^#_0(3) -> 11
                 , q0^#_0(6) -> 11
                 , q0^#_0(9) -> 11
                 , q0^#_0(10) -> 11
                 , q1^#_0(3) -> 13
                 , q1^#_0(6) -> 13
                 , q1^#_0(9) -> 13
                 , q1^#_0(10) -> 13
                 , a^#_0(3) -> 15
                 , a^#_0(6) -> 15
                 , a^#_0(9) -> 15
                 , a^#_0(10) -> 15
                 , y^#_0(3) -> 17
                 , y^#_0(6) -> 17
                 , y^#_0(9) -> 17
                 , y^#_0(10) -> 17
                 , q2^#_0(3) -> 19
                 , q2^#_0(6) -> 19
                 , q2^#_0(9) -> 19
                 , q2^#_0(10) -> 19
                 , c_9_0(11) -> 19
                 , q3^#_0(3) -> 27
                 , q3^#_0(6) -> 27
                 , q3^#_0(9) -> 27
                 , q3^#_0(10) -> 27}
      
   2) {q3^#(y(x1)) -> c_11(y^#(q3(x1)))}
      
      The usable rules for this path are the following:
      {  q3(y(x1)) -> y(q3(x1))
       , q3(bl(x1)) -> bl(q4(x1))
       , y(q1(b(x1))) -> q2(y(y(x1)))
       , y(q2(a(x1))) -> q2(y(a(x1)))
       , y(q2(y(x1))) -> q2(y(y(x1)))
       , a(q1(b(x1))) -> q2(a(y(x1)))
       , a(q2(a(x1))) -> q2(a(a(x1)))
       , a(q2(y(x1))) -> q2(a(y(x1)))
       , q2(x(x1)) -> x(q0(x1))
       , q0(a(x1)) -> x(q1(x1))
       , q0(y(x1)) -> y(q3(x1))
       , q1(a(x1)) -> a(q1(x1))
       , q1(y(x1)) -> y(q1(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q3(y(x1)) -> y(q3(x1))
               , q3(bl(x1)) -> bl(q4(x1))
               , y(q1(b(x1))) -> q2(y(y(x1)))
               , y(q2(a(x1))) -> q2(y(a(x1)))
               , y(q2(y(x1))) -> q2(y(y(x1)))
               , a(q1(b(x1))) -> q2(a(y(x1)))
               , a(q2(a(x1))) -> q2(a(a(x1)))
               , a(q2(y(x1))) -> q2(a(y(x1)))
               , q2(x(x1)) -> x(q0(x1))
               , q0(a(x1)) -> x(q1(x1))
               , q0(y(x1)) -> y(q3(x1))
               , q1(a(x1)) -> a(q1(x1))
               , q1(y(x1)) -> y(q1(x1))
               , q3^#(y(x1)) -> c_11(y^#(q3(x1)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  q3(bl(x1)) -> bl(q4(x1))
             , q0(a(x1)) -> x(q1(x1))
             , q0(y(x1)) -> y(q3(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q3(bl(x1)) -> bl(q4(x1))
               , q0(a(x1)) -> x(q1(x1))
               , q0(y(x1)) -> y(q3(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [4]
                  a(x1) = [1] x1 + [4]
                  x(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  y(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  bl(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  a^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  y^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [1]
                  c_11(x1) = [1] x1 + [0]
                  c_12() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3^#(y(x1)) -> c_11(y^#(q3(x1)))}
            and weakly orienting the rules
            {  q3(bl(x1)) -> bl(q4(x1))
             , q0(a(x1)) -> x(q1(x1))
             , q0(y(x1)) -> y(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3^#(y(x1)) -> c_11(y^#(q3(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  a(x1) = [1] x1 + [0]
                  x(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  y(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  bl(x1) = [1] x1 + [7]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  a^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  y^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [5]
                  c_11(x1) = [1] x1 + [0]
                  c_12() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  y(q1(b(x1))) -> q2(y(y(x1)))
             , a(q1(b(x1))) -> q2(a(y(x1)))}
            and weakly orienting the rules
            {  q3^#(y(x1)) -> c_11(y^#(q3(x1)))
             , q3(bl(x1)) -> bl(q4(x1))
             , q0(a(x1)) -> x(q1(x1))
             , q0(y(x1)) -> y(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  y(q1(b(x1))) -> q2(y(y(x1)))
               , a(q1(b(x1))) -> q2(a(y(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [8]
                  a(x1) = [1] x1 + [2]
                  x(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [8]
                  y(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [1]
                  bl(x1) = [1] x1 + [15]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  a^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  y^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [9]
                  c_11(x1) = [1] x1 + [0]
                  c_12() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q2(x(x1)) -> x(q0(x1))}
            and weakly orienting the rules
            {  y(q1(b(x1))) -> q2(y(y(x1)))
             , a(q1(b(x1))) -> q2(a(y(x1)))
             , q3^#(y(x1)) -> c_11(y^#(q3(x1)))
             , q3(bl(x1)) -> bl(q4(x1))
             , q0(a(x1)) -> x(q1(x1))
             , q0(y(x1)) -> y(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2(x(x1)) -> x(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [4]
                  a(x1) = [1] x1 + [0]
                  x(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  y(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [12]
                  q2(x1) = [1] x1 + [8]
                  q3(x1) = [1] x1 + [1]
                  bl(x1) = [1] x1 + [15]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  a^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  y^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [11]
                  c_11(x1) = [1] x1 + [7]
                  c_12() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q3(y(x1)) -> y(q3(x1))
                 , y(q2(a(x1))) -> q2(y(a(x1)))
                 , y(q2(y(x1))) -> q2(y(y(x1)))
                 , a(q2(a(x1))) -> q2(a(a(x1)))
                 , a(q2(y(x1))) -> q2(a(y(x1)))
                 , q1(a(x1)) -> a(q1(x1))
                 , q1(y(x1)) -> y(q1(x1))}
              Weak Rules:
                {  q2(x(x1)) -> x(q0(x1))
                 , y(q1(b(x1))) -> q2(y(y(x1)))
                 , a(q1(b(x1))) -> q2(a(y(x1)))
                 , q3^#(y(x1)) -> c_11(y^#(q3(x1)))
                 , q3(bl(x1)) -> bl(q4(x1))
                 , q0(a(x1)) -> x(q1(x1))
                 , q0(y(x1)) -> y(q3(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q3(y(x1)) -> y(q3(x1))
                   , y(q2(a(x1))) -> q2(y(a(x1)))
                   , y(q2(y(x1))) -> q2(y(y(x1)))
                   , a(q2(a(x1))) -> q2(a(a(x1)))
                   , a(q2(y(x1))) -> q2(a(y(x1)))
                   , q1(a(x1)) -> a(q1(x1))
                   , q1(y(x1)) -> y(q1(x1))}
                Weak Rules:
                  {  q2(x(x1)) -> x(q0(x1))
                   , y(q1(b(x1))) -> q2(y(y(x1)))
                   , a(q1(b(x1))) -> q2(a(y(x1)))
                   , q3^#(y(x1)) -> c_11(y^#(q3(x1)))
                   , q3(bl(x1)) -> bl(q4(x1))
                   , q0(a(x1)) -> x(q1(x1))
                   , q0(y(x1)) -> y(q3(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  x_0(3) -> 3
                 , x_0(6) -> 3
                 , x_0(9) -> 3
                 , x_0(10) -> 3
                 , b_0(3) -> 6
                 , b_0(6) -> 6
                 , b_0(9) -> 6
                 , b_0(10) -> 6
                 , bl_0(3) -> 9
                 , bl_0(6) -> 9
                 , bl_0(9) -> 9
                 , bl_0(10) -> 9
                 , q4_0(3) -> 10
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , y^#_0(3) -> 17
                 , y^#_0(6) -> 17
                 , y^#_0(9) -> 17
                 , y^#_0(10) -> 17
                 , q3^#_0(3) -> 27
                 , q3^#_0(6) -> 27
                 , q3^#_0(9) -> 27
                 , q3^#_0(10) -> 27}
      
   3) {q3^#(bl(x1)) -> c_12()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           q0(x1) = [0] x1 + [0]
           a(x1) = [0] x1 + [0]
           x(x1) = [0] x1 + [0]
           q1(x1) = [0] x1 + [0]
           y(x1) = [0] x1 + [0]
           b(x1) = [0] x1 + [0]
           q2(x1) = [0] x1 + [0]
           q3(x1) = [0] x1 + [0]
           bl(x1) = [0] x1 + [0]
           q4(x1) = [0] x1 + [0]
           q0^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           q1^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           a^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           y^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           q2^#(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           q3^#(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {q3^#(bl(x1)) -> c_12()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {q3^#(bl(x1)) -> c_12()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3^#(bl(x1)) -> c_12()}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [0] x1 + [0]
                  a(x1) = [0] x1 + [0]
                  x(x1) = [0] x1 + [0]
                  q1(x1) = [0] x1 + [0]
                  y(x1) = [0] x1 + [0]
                  b(x1) = [0] x1 + [0]
                  q2(x1) = [0] x1 + [0]
                  q3(x1) = [0] x1 + [0]
                  bl(x1) = [1] x1 + [0]
                  q4(x1) = [0] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  a^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  y^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {q3^#(bl(x1)) -> c_12()}
            
            Details:         
              The given problem does not contain any strict rules